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~costatsin a more or less complicated fashion depending on the viscoelastic
model used. The stresses, strains and displacements are then found from these
potentials for a dozen cases of' interest in those two coordinate systems. The
formulation resembles that of electrodynamics in a Coulomb gauge.

Ac above information is vital to set-up and solve various kinds of
boundary-valua~-problems of dynamic viscoelasticity which appear when studying
case .z ol- acoustic scattering from sound-absorbing structures, problems we are
now addressing. The analysis is summarized in two large Tab t-up in a
corveuiently accessible form. Remarks on "~complex-moduli examined in a

rinal section under the light of the viscoelasticity "Correspo dence Theorem"
and a list of reco~enda~tions and conclusions is given at the d.
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METHODS FOR SOLVING THE VISCOELASTICITY EQUATIONS FOR CYLINDER
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dynamic viscoelasticityintogoeretovsolscmdladadzn
different situations of interest. This information is needed to study acoustic
scattering from sound-absorbing structures of cylindrical and spherical shapes,
which are cases presently under study by the author. This report sets up most
of' the theoretical viscoelasticity foundations needed to deal with the other
sound scattering problems under study.

This work is continuing and it was done as part of' an NS1WC project entitled
"Acoustical Properties of Ordnance Materials", Task No. MAT-03L-OOO/ZROO-O0l-OlO,
Problem 127, which deals with acoustic scattering from objects covered with
viscoelastic materials. This is a progress report describing work done during
I7Y T6.

J. R. DIXON
By direct ion
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I. INTRODUCTION The basic viscoelastic models.

The deformation of a viscoelastic solid under any kind of external loads is
usually studied by means of viscoelastic models. Two basic models commonly used
are associated with the names of Kelvin&-Voigtz and Maxwell 3 . In the Kelvin-
,Voigt model, the elastic and viscous properties of each material point (or par-
ticle)of the body, which can be respectively represented by a spring and a dash-
pot, are assumed connected in parallel. In the Maxwell model they are assumed
connected in series. We releat that this description applies at each point in
the viscoelastic solid and it is as if the body contained a continuous distri-
bution of damped oscillators, (viz, elementary mass-spring-dashpot systems) one
at each one of its material points. As if it were not clear enough already, the
entire "Kelvin-Voigt solid' can not be replaced by ONE spring connected in paral-

A lel with ONE dashpot. This simplistic view of a deformable solid as a single
particle, may be useful in some other elementary context such as that used when
one treats a body as a particle, but it is of no use in viscoelasticity. Other-
wise viscoelasticity could not be viewed as a field-theory capable of describing
stress and displacement fields at each point in a body, since by that oversimpli-
fication, the body has been reduced to a particle. We emphasize this rather
trivial, but quickly forgotten point, because it is common to find authors who
try to use, say, the "Kelvin model" as a single spring in parallel with a single
dashpot, only to find that the model is "no-good" and that they must go to "more-
degrees-of-freedom systems", such as three "Kelvin-models" in series, or other
similar configurations, to obtain meaningful results. It is clear that this ap-
proach does not give tho Kelvin model, as it truly is, even a charce to %rork".
These authors have replaced the continuous field-equations of viscoelasticity?,
by a set of three ordinery second-order differential equations of the simple

William Thomson (Lord Kelvin), b. at Belf'..+, +' ; d, near Glasgow, 1907.
Professor at Glascov Univ, 1846-1889. Buried at Westminster Abbey, London
(near Newton's tomb).

a Woldemur Voit, b. at Leiptig 1850; d. at Gattingen 1919. Professor of
Mechanics at GOttingen Univ, German-y.

3 James C. Maxwell, b. Edinburgh, 1831; d. Cambridge, 1879. Professor of
Physics at King's College and at Cambridge Univ, 1860-1879. Founder of the
Cavendish Lab at Cambridge.

S ,ie, a set of three scalar partial differential equations hopelessly coupled
and non-linear, governing the displacement-field in the body, which can be
linearized for small deformations and small deformation-gradients, and the
"linear" theory of viscoelasticity then results. These equations are called
the Navier equations of viscoelast."ity.

3
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damped-oscillator type. This replacement is, in no way, equivalent to solving the
field-equations of Navier.

The basic point of the continuum field-theory approach to viscoelasticity is
that the model assumptions, that the spring and dashpot are connected in series
or in parallel at each point in the body, are immediately reflected in the fact

that the field-equations resulting from either one of those models turn out to be
different. To fix the ideas we now give the linearized form of the field-equations
for both these models.

i) Kelvin-Voigt Model (parallel):

1 + i 1 + 1 i2

it I. I_+

ii) Maxwell Model (series):

1+ • a2

' - 1 ;~3i28 at 2 e2-y j•e(C( 8

a a t
C: at.. C at C8

Here 0 is the material density • , X u are the elastic Lamg constants,
u is the vector-displacement field, and e\ ,e' (or a, 8 in the tsxvell model)
are the viscosity coefficients. As given agove', in differential operator form,
these equations hold in any coordinate system. These are the Navier equations one

must solve in the viscoelastic body. It is possible to derive eqs. (i) and (ii)
starting from the basic idea that the spring and dashpot at each material point

S'are connected either in parallel or in series respectively. Once the displacement

field components are found by solving (i) or (ii) Vith suitable boundary conditions,
one can then find the stresses from the=.

In the absence of viscosity (ie, X 0, u, 0 for the Kelvin model or
CL 0, 8 = 0 for the MAwell model) both field eýuations (i) and (ii) given above
reduce to,

iii) The Pield equations of linear dynamic elasticity:

22.t1 - )Ca at2

!i4

.7• .m.m m m m•m• e~•mm . ..
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since now there are only springs and no dashpots at each material point. The

scalar components of this vector equation are the Navier equations of elasticity

in the absence ofbody-forces as found by Naviers for the elastic body. Equations

Wi) and (ii) are also called the Navier equations (of viscoelasticity) by exten-

sion, since Navier never worked with viscoelastic solids.

In most materials of interest, the "constants" X and the "coefficients"

Y '~ • are really not constants, but frequency-dependent parameters. Thus, few

materials are completely describable by the Kelvin or the Maxwell models in the
continuum sense of eqs. Ui) and (ii). The material behavior of viscoelastic sub-

11 i stances tends to follow one or the other model in different regions of the para-
meters involved, say, frequency among others. This means that in general, these
models of field-equations (i) and ci) are quite "good". Rubbers at low frequen-
cies are known to be well described by the Kelvin model (i). Pulse-tube measure-
ments exploit this factual observation. Since these models are not perfect, re-

searchers in this field have proposed more complicated models.

It is not hard to see that various Maxwell elements in series at each point
-lI in the body have the properties of a single Maxwell element with equivalent spring

n

and dashpot constants given by 1/keq - l/ki and 1A

respectively. Various Kelvin elements in parallel at each point in the body have

the properties of a single Kelvin element Vith ke- ka eq4 ni

On the other hand, Kelvin elements in series, or Maxwell elements in parallel,
have more complicated properties. In their desire to generalize the basic models

-i . (i) and (ii), researchers have invented the so called "standard viscoelastic
=odel". It consists of a Maxwell element in parallel with a Kelvin element at
each pcint in the body. The linearized field equations which result in this model
when two springs and two dashpots are connected as described above must be very
complicated and rare, sinte I can not find one single reference to them. 1 was
able to derive the particular subcase which results when the two dashpots are
described by one single viscous constant n and both springs by the snne two
elastic constants Xe aud ve" The resulting field equations in this still very

2e

• C. L. Navier, (1827) M- oire sur les lois de !'equilibre et du mouvement deo
corps solides ilastiques. X5m. Acad. Sci. Paris 7.

• !i•,
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general case are,

iv) 1e4 - v2 • + t

(X. + + t

where tl is the Kronecker delta equal to one (zero) for t = t (or t # t2).
t t 1 2 1 21 2

Further t (or t ) equal n/e.1 For tI = 0 and t 2  n/Ue (here n i.'), eqs.
1 2 e' e v

(iv) reduce to the Kelvin model equations (i). When t = t = n/h (which amounts
to setting 28 = i/nand -3a = 1/n), equations (iv) reAuce io the Aaxwell model

:- equations ai) with 3a + 28 = 0. The quantities tI and t are the retardation or
relaxation times of the Kelvin and Maxwell models respeciively. The constitutive
.(e, stress-strain) relations of this viscoelastic model are also given in ref (6).
I know of no viscoelastic boundary-value-problem that has ever been analytically
solved using this model, which many agree is more realistic than (i) or (ii),
since it can describe wider material behaviors and a wider variety of materials.
Since the "standard viscoelastic model" is so hard to handle, we must realistically
conclude that all analytical viscoelastic problems we are bound to see solved in
the near future will be based on either the Kelvin or the Maxwell models of field
equations (i) or (ii) respectively.

Occasionally we find a reference in the literature which contains a very
complicated network such as a doten "Maxwell elements" in parallel. Such a com-
plicated network immediately implips that this is not a continuum field-theory
approach, but rather that the body has been replaced by twelve coupled damped-
Soscillators. Work of this nature happens to be mostly experimental, chemical, and
containing little mathematical analysis. These complicated networks are basically
intended as pictorial descriptionu without much physico-mathematical discussion
of the respon3e of the twelve coupled-oscillators, which, per se, is far from

I If being a trivial problem. Sometimes one comes across an entire textbook dealing
with various aspects of viscoelasticity without a single reference to the contin-
u.uum approach, or the field-equations for the viscoelastic models. This old fash-
ioned tendenc.y is out-dated today. Mechanics of deformable media has become more

"* highly mathematited now-a-days, than ever before.

6
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II. SOLUTYION OF ThI FIELD EQUATIONS. (Tables 1 & 2)

We will now present a way to solve the field-equations of linear dynamic
viscoelasticity (i) and (ii). The technique we will follow is comm~on in other
field-theories (ie, electro-(iynsmics) but we believe it is novel in viscoelast city.
It consists of introducing scalar and vector potentials 0 and such that u

+ x 4'and * ' 0. By splitting the displacement field u into irrotation-
al and solenoidal parts in this fashion, it turns out that the field equations of
each model (i) or (ii) are automatically satisfied provided that the scalar and
vector potentials satisfy certain scalar and vector te~.'-.&ý!ph-type equations.
The vector ~otentale. has three scalar components, but sinee the solenoidal gauge
condition ' 4 =0 must be satisfied, only two of the three scalar functions
are independent. Those two ('and X where 4'is not [r j) together with the scalar
potential ý, form the three independent scalar potentials that can be used t3
solve the problem. If these three independent scalar potentials satisfy three
scalar telegraph-type equations then it can be shown that the f4,eld equations are
automatically satisfied.

It is then possible to express all the stress and displacement components in
terms of these independent potentials, which are determined first by solving the
telegraph-type equations they must satisfy. In this f shion we cani determine all
the stresses and displacements in the bod~y needed to completely solve the problem.

lo discuss these sclutions for the Kelvin-Voig-t or Ifaxwell solils we have
constructed two charts. (Tables 1 mid 2). Table I deals with these viscoelastic
models Cortheger~eral case of arbitrary tice-dopendence. Table 2 covers the im-
portant case of harmonic time-dependence of the form exp (-iwt). The coordinate
systems covered in those tables are the cylindrical and the spheri.,al. '"he
cYlindr.ca system is studiel in general in colunins B and C for the Kelvin or
Xu~ell models respectively. It is also studiel in the (:-independent) pae
strain, subcaie, whichn is applicable to Infinitely long cylinders, in cclums D and
E, 'for the Kelvin and ý ~vell models, respectively. The spherical system isalso
presented in fUll Seneri-lity in col=m F for the Kelvin zoiel. It is &lso given.
in column G for the axi-s~.y'metric case without atinuthal dependence 0, u.gain fcr
the Xelv~in m-odel. The Maxwell model is not covered for spherical coordinates in
these tab'es. Mhe basic resul.t. of these tables, particularly -*able 2, for har-
monic ti-e-dependence, is that if we introduce independent scalar potentials
which satisfy the Holiholtz's equations with cozplex propagation cor.st~nts givern
in ilter, (0, ten the field eq%;ations given in items (7) are automatically satis-
fied for each of the cases considered. ýFurthermmore, the ditplacettent and stress-

iel d co~cveents are found f"rom the p.,,terntials by the relations in items (4) sand
()respelctivrely. Nctice that the cetiplex prepa~atior. coustants river. i.- item

(0) are related to the elastic and viscous constants of the viscvelastic material
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in a more or less complicated fashion depending on the model being used. For
examp.le, the relation is more complicated for the Maxwell than for the Kelvin
model, in any coordinate system. These tables provide us with the methodology
and information needed to solve boundary-value-problems of viscoelasto-dynamics
for spherical or cylindrical geometries, in the Kelvin-Voigt or Maxwell models.
The approach and material covered in these tables seems to be novel as applied to
viscoelasticity. The reader familiar with electro-magnetic theory will quickly
notice the analogy of the presentatioq in 4 this table to that of electrodyn~mic+

theory in the less familiar Coulomb (V• = 0), rather than Lorentz (ie, V
+l

c 0) gauge.

To verify that all the entries in the tables check with each other, we will
illustrate the use of the formulas by analyzing one example. We arbitrarily
select column D, which dee.-l with the Kelvin-Voigt model in cylindrical coordi-
nates for the subcase of .ane-strain.

1. Definition oý. ?lanc-Strain

In plane-str- In, the strain tensor is two-dimensional and all strain compo-
nents with a sub.xdex z (axial coordinate) vanish. The stress-tensor is not, and
there is a nonvanishing normal stress T . Another equivalent way to define this
situation is by stating that the axial afsplacement u vanishes, and that the

zother twc displactment components u and ue are z-independent. Plane-strain is ao~~~her~~ tweipa~etcmoet

particularly useful approximation for bodies which are very long in the z-direc-
tion.

2. Constitutive Relations

These are the relations between the stress and strain field components,
There are three normal and one shear-itre.•" components related to two normal and
one shear-strain components. Stress and strain are independent concepts. Only
when these two notions are linked through constitutive relations, is that a visco-
elastic theory is formed. The first of these four relations is,

T rr X ( e - iWXv ")A+ 2(Ue iWPv) E rr

where A is the trace of the strain terzsor (ie, e + -) and it is called the

dilatation. The other three relations are shown in Table 2.

3. Strain-Displacement Relations

Since the elastic or viscous constants do not appear in these relations,
they are the same as in elasticity, namely,

r= .r , Oue + Ur, 2 e 1 Ur + u u
r r r ae r r ar r

all other strs.in-components vanishing by definition of plane-strain.

13
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4. Displacement Inderendent Potential Relation

These relations are intimately linked to the solenoidal solution of the
vector Hcilmholtz equation in plane polar coordinates which is discussed below in
item (11). The relations can be written as a single vector equation as follows,

uvq + N X Z

z z

where 4 and ý_ are the two independent scalar potentials 2needed in this plane-
strain formulatia. It is shown in item (11) that where is a

solution of the scalar Helmholtz's equation ( V2 + <2 ) X w=r0.

5. Stress -- Displiacement Relations

If the strain-displacement relations (3) are substituted intc the constitu-
tive relations (2), the result is the Lvress-displacement relations. The first
such relation is,

S•ur
- [;, -iWX] A + 2 [ iw"v]•rr a Pe v ;

where the dilatation A is now expressed in terms of the displacement components
as follows,

r +1 I + r
ar r ae r

6. Strain•- Independent Potential Relations

If the displacement-independent potential relations (4) are substituted into
the strain-displacemez• relations (3), the result is the strain-potential relation.
The first of these three is,

%£ •"!i •~+ Z • •.

rr 2 2

and analogously for the other two. Here 4 and Z are the two independent

scalar potenti.ls. lot! that , 2is the axial component of the vector potential
i. Further, K_ = X -,' X where X is ano(ther independent scalar poten-
tial vhich can uLso be-used here. (See item (11) below)

7. Field Epuaticns

These are the :Navier equations given initially it. (i). For harmonic time-
dependence they can be written as follows,

..................... •. +....................
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2e v 2

wher quatiie dilatation; t. For plane-

stanin cylindricals, th uniis u ad Atk nthe following
simplified forms,

2u 2 - O +uaVr 2 2 C 2 Vu, u 2 r0 C
r r r r

grad A Tr r r a6

and also we have,

u u C + u
r r

2'
2nd 2+ + 2. (r,6).

r 1a 2- r ar 232
r r

8.Stress -Independent Potential Relations

If the strain-potential relations (6) are substituted into the constitutive
relati±ons (2), we obtain the stress-potential relations. One form of the first of
these relations is,

1822

2The second form can be foune by setting, K~ X~. The formulas for the
other three stresses present in this case can be found in Table 2.

9. Helmho).tt's Equations For The Scalar And Vector Potentials

Subitituting u grad 0 + c~.r1 into the Navier equations written in~
the alte,1..w' ve form,

"'Pe Uj) ~.) U# x ('x U) + U* K. u~ 0

where X* X iwx U,1  U1 ie - and K w w vnta' id

15
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x+2p*) ~ I 2 + K 2  + P*~ X +V-(~~ +K 2  0 where

K 2 2-X+_ iw +p - and K 2  is as we defiL-ed it above in

item (7). It is obvious that the above exprdssion is satisfied if,

V + K 1 and V ~+ K 2  0 provided that

4 I =0 (ie, "Coulomb'" gauge).

10. Helmholtz's Equations For The Independent Scalar Potentials

Since in this case, = P then, V V2  and the result is,Z z z z

(V2  + K1
2) 0, (V2 + 2 )J 0

II11. Solenoida~l Solution of The Vector Hielmholtz Equation

2 2
It is not hard to show that the solenoidal solution of ( + 2 ) 4 0

22ist five, tye abv reltio is0 ,adý K2  x. whrhe(, se ar schea

th clrfunction X~ (r,O). Note that, indeed V 0. Note that in the
absence of viscosity (ie, XA 0, p 0) the complex propagation constants K1

and Kbecome real. Thus viscous damnping is accounted for in these models by
complix propagation constants, related to the material "constants" as shown above
in items (T) and (9).

12. Remarks

a) In cylindrical coordinates the plane-stress results are derivable from
the plane-strain results by replacing the elastic constant A in -,he plane-strain
results, by the fictitious "constant" Ae defined to be, A~ = e 2XU I(Ae + 211e)
In spherical.] coordinates there is no way to define the plane-streas subcase. In
plane-stress, the stress tensor is two-dimensional, which means t.iat all stress-
components with a subizrdex z, vanish. The strain-tensor is not two-dimensional
and there is an e nonvanishing strain. This case is ideally suited for bodies
which are very thIA in one direction, the z-di'rection.

b) Plane-strain (or plane-stress) with a~xial-.sy=.etry about the z-direction
can be obtained from the results in the eleven items above by merely settingu
0 and L (any variableJ 0. There is only radial dependence in this situation.

16
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c) All the above applies to the Kelvin-Voigt model in cylindrical (actually,
plane polar) coordinates, for the plane-strain subcase. This is Column D of Table
2. There are twelve cases covered in Tables 1 and 2 and this one was intended as
an example to show how the various entries are derived from the others, how they
check with each other, and how one could proceed to drive any other case. We have
used the information in these tables to rigorously set up and solve acoustic scat-
tering problems where the scattering bodies are elastic cylinders and spheres with
their outer surface coated with layers of viscoelastically absorbing materials.'
One reason to have written this report is to gather these fundamental viscoelastic-
ity relations, which are not available elsewhere to this degree of detail and
approach, in one document that we could refer to in future work as -he place where
the theoretical background is derived and presented, in the form in which ie will
use it.

d) Some authors have stated that in order to solve problems involving absorp-
tive bodies one must deal with Helmholtz's equation with a complex propagation
constant K. This is indeed correct but there is much more to it than Just that.
Just with a complex K we would not know how the real and imaginary parts of K are
related to the elastic and viscous material constants of the solid in the various
viscoelastic models that one could use. In fact, we would not know this relation-
ship in any model. Furthermore, we would not know how to relate the stresses and
displacements in the body to the solution of that Helmholtz equaticn with a com-
plex K. Hence, although the idea is correct, in practice one really needs to de-
rive all the detailed information contained in these tables, and that is why we

i i developed them. Careful examination of these tables shows that the problem is
really harder than anticipated, since we must solve not one but several (ie, three)
Helmholtz's equations with various (ie, two) complex propagation cc.nstants which
are different, and then go through various other sets of equations (ie, 4 and 8)
to obtain the displacements and stresses from the solutions of those Helmholtz's
equations. We finally point out that this procedure yields different results in
each one of the various models and cases presented there.

e) Column A, Table 1 shows some general formulas valid, for all coordinate
systems. Note, however, that since the solution of the vector telegraph equation
varies with the coordinate system, not many general entries can be filled in that
coluzmn.

' G. C. aunaurd, Scund Scattering frcm an Elastic Cylinder Covered With a
Viaccel ast4.c -oatiag, JASA 58, SIC', 1075. Also, Proc. of "I., U.S.-Fed.
R epublic of Germany, Hydroacoustics Sympcsium, %Ufllch, Germany, Vol 1, Fart "•
pp 4-11. May 19T5 M
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:i+KX+i~t 22
or also, C(x,t) = A e- where, K2 = - (3)

2(1+iWP)

A Here C is real and the - signs in front of Kx describe waves travelling to theright Er left of some origin. (if one were interested in time-dependence exp(-iwt)we would replace i by -i in all these results.)

Now let us consider the standard one-dimensional wave equation,

2 2

axc C at'

The solution of eq. (h) for harmonic time-dependence exp(iwt) can analogously
be written as,

+ 2
O(x,t) = A ei[+ KX + wt] where K2 (5)

C2
+KX + iWt 2

or also, C(x,t) = A e- where K =
c2

eqaIt is obvious that2 solutiuns (2) and (5) and also (3) and (6) can be madeSequal- by setting C = C (U + iwP). It is clear that we can solve the telegraph

pequation with a real propagation speed C by ignoring the damping term, ie, bysolving the wave-equation with a suitably chosen complex propagation speed. Com-
plex speeds are artificially produced by fictitious complex elastic constants that
one can introduce for this ptrpose.

Let us now look at the case of shear waves in a solid. Define a complex
shear modulus u* ul' + ip" = i (U1 U i+), where 6 = L"/L'.

The equations of linear viscoelasticity are the same of those of elasticity
.ie, no viscosity) if X and ue in the elasticity equations are replaced by thee e

quantities, X* U'e + iWU L' e iL v (C)e[ .v: e v

,.OTE: This is true only in the Kelvin-Voigt viscoelastic model with assumed time-
dependence of the form exp(iwt).

Clearly ue = w' and wv Lit"/w. Thus, for shear waves,
Su~~e V• 8

V 11,+ 19

Li N - = and C C 'li ' (1)
Le (Ajll, W 1 p4
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Hence, for harmonic shear waves in the Kelvin mudel, by solving the wave-
equation, with a complex shear modulus, we have the solution of the telegraph
equation. This can also be done in the Kelvin model for longitudinal (or dilats-
tional) waves.

It turns out that the Kelvin model with harmonic time-dependence assumed, is
the only case where the viscosity coefficientsX , . of the viscoelastic solid are

linearly proportional to the imaginary parts X", I of the "complex elastic con-

stants" X*, 0*, the proportionality factors being I/w. It is also the only case
where the elastic constants X , .i of the solid are just the real parts X', U' of
the "complex elastic constantS.'' e

To show this, let us now consider the Maxwell model, where the springs and
dashpots at each material point are now connected in series. It can be quickly
shown that the field equations and constitutive relations of the Maxwell solid:1 are the same as those of elasticity, provided that the elastic constants Xe) 1 e
of the elasticity equations are replaced by the operators,

X (2 •+ 2
e ap2 e ~ e Tt

28 t 3a + 28 + j' 2B +8

where a, 8 are the viscosity coefficients of the Maxwell model (which are analo-
gous to X_, W of the Kelvin model). For time-dependence of th.e form exp(-iwt)
we can caYl t~ese operators by the name "complex elastic constants" X*, u* ie,

X ( +28 -iw)
iw) -W e e Ue (10)

It is obvious that if there is no viscosity (ie, a = 0,$ = 0) these quantities
)•, •' would reduce to X , • respectively. It is also clear that a and 8 are
now not proportional to t~e imaginary parts of A* and u* respectively. Further-
more, X and ie are not the real parts of X* and i anymore. Thus the "trick" ofe e
the complex elastic constants does not work here at all. The trick" also fails
for the standard viscoelastic model, or any more complicated model which contains
at least one la•xwell element. In fact it fails even when there is no Maxwell
element in the model provided there is more than one Kelvin element. Thus, only
for one single Kelvin element will it "work."

For the reasons given above we believe that the most clear, systematic and
natural way to handle viscoelastic problems of this sort is to measure the (real)
elastic constants of the material independently from the (real) viscous coeffi-
cients and then use those numerical values in the field-equations when analyti-
cally solving them. Of course, we must keep the damping terms in the field equa-
tions. The final result will be ,omplex, but this fact is due to the presence of
the damping terms rather than because of any "complex rooduli" we wanrt to ficti-
tiously introduce because of our insistance on ignoring the dampirg terns instead.
We have seer. that the complex --oduli "trick" becomes exceedingly difficult, in f,.ct
impossible, in any case other than the Kelvin-Voigt model with harmonic ti-me-depead-
ence.

20
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1. The Correspondence Theorem

A very useful theorem that permits us to relate solutions of elasticproblems
to those of viscoelasticity (in any model) is the Correspondence Theorem.' This
theorem has a conceptually very simple statement, but it is very difficult to
apply it to actual cases. The theorem basically says that if we want the solution
to a viscoelasticity problem (static or dynamic, and in any model) we should first
solve the "corresponding" elastic problem without viscosity. Then we Laplace-
transform the solution. Then we replace the elastic constants appearing in that
Laplace-transformed solution, by certain "memory functions" (which vary with the
viscoelastic model being used). The result of this replacement is the Laplace
transform of the solution of the "corresponding" viscoelastic problem. Inverting
it, we have the solution of the viscoelastic problem we wanted to solve. We here
recall the Laplace Transform pair,

F(s) f(t) eJtdt , f(t) _ fc+i- F(s)e ds

The prescription given by the Correspondence Theorem is very straight forward.
It turns out in practice that when the elastic constants are replaced by those
memory functions", the resulting Laplace-transformed solution that must now be

inverted is quite formidable in most cases of interest (ie, dynamic cases). Weshould point out that the memory functions depend on the Laplace transform variable

s in a more or less complicated manner depending on whatever viscoelastic model one
A uses. See equations (T) or (10) with iw replaced by s, for the Kelvin or the

Maxwell model respectively.

I don't really want to discuss the Correspondence Theorem or its applications.
My point is that those "memory functions" mentioned in it, are precisely the
equivalent or the analogue of those "complex-elastic constants" that some authors
try to introduce fictitiously in real-space rather than in the Laplace-space, be-
fore inversion to the real time-domain. Hence, the way to use those "complex
elastic constants" in a way that Irorks," is really in the light of the correspond-
ence theorem. Unfortunately, that is quite a difficult task.

We have already pointed out that another method which "works" is to measure
the (real) elastic and viscous constants of the material, each set independently
of the other, and then solve the field-equations with the damping terms included,
with those numerical values measured for the constants. This method is also
general and works for any viscoelastic model and it is, incidentally, the way
visicous flow problems are attacked in Fluid Mechanics.

• See A. Cemral Eringen, "Continuum Mechanics," John Wiley and Sons, inc., 1967,
Article 9.12, p. 368.

2).• ]•,1

¶. . . . . , . . , .. , . . . , . ,• . :, . . . . . H . , , , . ' "-, ' • : .• ' ' , . " "



NSWC/WOL/TR-T6-20

Observation of Table 1 and 2 shows why the telegraph-type equations we have
discussed here are so important in viscoelasto-dynamical problems. Note that the
telegraph-type equations for the potentials 4, i, X are of the type given here in4q. (1), for the Kelvin-Voigt model only. Note, for exmaple, that for the Maxwell
model they are substantially different. (Table 1, eqs. C-10). The equation forSis, C

2
C

[26 + 4 + V = - a + 4 + 2LI +-~ 2B (3a + 2a) (11)c d chd 2aT t2

which is of the same "type" but not quite of the form given here in eq. (1).

We can conceptually always introduce complex moduli (as in eqs. (7) or (10)
or their analogues for the "standard" model) provided we work in Laplace space as
prescribed by the Correspondence Theorem. If we introduce them in the real time-
domain and then try to physically identify the real (or imaginary) parts of these
complex constants with the real elastic constants (or the viscous coefficients),
then the process only "works" in the Kelvin-Voigt model. In this sense, "works"
means that the equivalence of both approaches can be established.

One way to experimentally measure the absorption losses of material samples
is the impedance tube or pulse tube. It is customary for the literature on this
technique to report measurements of quantities such as E' and E" or 1' and 1j" etc...
This technique is a good source for the popularity of "complex moduli". We should
note that the lossy samples tested in this fashion are always characterized by the

jI Kelvin-Voigt viscoelastic model with harmonic time-dependence, an assumption that
may not always be Justified.

i 2. Conclusions

We summarize our points as follows,

(a) The continuum (infinite number of degrees-of-freedom) approach to visco-
elasticity as a field-theory is the only way to go today. Discrete approaches
leave much to be desired and are simplistically unrealistic.

(b) It looks like for some time to come, we will be dealing with the Kelvin-

.Voigt and Maxwell models, since any other model presents too many analytical
difficulties.

(c) A systematic way to set up viscoelastic boundar-y-value-problems and
solve the field equations in these two models, is presented here for cylinder and
sphere problems. This approach is shown in Tables 1 aud 2 which are self-
explanatory.

(d) The most general method available to solte static or dynamic problems
of viscoelasticity in any model is by means of the Correspondence Theorem. Here
%we must work in Laplace-space and the inversions are hard. This approach is
totally equivalent (at least for the Kelvin and Maxwell models) to our approach
described above in (3) and in Tables 1 and 2.

I A 7
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(e) Another technique, which holds for a model, is also given here. It
consists of solving those resulting "telegraph-type" equations for the scalar
potentials keeping in them the damping terms, but using real values for the
elastic and viscous constants which are to be experimentally measured as it is
done in Fluid Mechanics.

(f) We claim this technique is more systematic and less confusing than to
ignore the damping terms introducing instead "complex elastic moduli". The
complex moduli "trick" only works for the Kelvin model with harmonic time-
dependence anyway.

(g) It seems clearer to us when talking about elastic constants, say,
Young's modulus E, to think of the slope of the stress-strain curve as found in a
tension test, than of that "complex Young's modulus" which contains the "loss" in
its imaginary part, all because some want to solve wave equations rather than
telegraph equations, particularly in the only situation when one is no harder to
solve than the other.

(h) The determination of the solid's elastic constants should be kept sep-
arate and independent from the determination of the viscosity coefficients. I
know this can be done in some instances, but I am not aware of how plausible this
recommendation can be in all instances.

(i) Finally it is worth stating that the pulse tube measurements implicitly
describe the viscoelastic "losses" in the sample by the Kelvin-Voigt model, an
observation that escaped me (and perhaps others) until recently.

(1) Equation (10) can be used to express the complex shear and dilational
moduli for the Maxwell model in terms of the viscosity coefficients and the elastic
constants of the model as follows,

124
f Azi and

X* + 20 + 211 +

2 + -i 3a,' +'e 2+( e)]+

++

These rel&tions may be useful when trying to interpret "losses" in the light
of the Maxwell model if one day one wishes, or the need arises to do so. It is
obvious that these relations are considerably more complicated than the analogous
ones for the Kelvin model, which are,

23
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X +V2

N ~ and M=
e e

(See Table 23, column A, item(9.
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